Chemical Components from Aloe and their Inhibition of Indoleamine 2, 3-dioxygenase
نویسندگان
چکیده
BACKGROUND In Korea, Aloe is routinely ingested as a traditional medicine or as a component of health beverages. OBJECTIVE To research the inhibition of indoleamine 2, 3-dioxygenase (IDO) activities of components from Aloe. MATERIALS AND METHODS the compounds were isolated by a combination of silica gel and YMC Rp-18 column chromatography, and their structures were identified by analysis of spectroscopic data (1D, 2D-NMR, and MS). All of the isolated compounds were examined for their ability to inhibit IDO, which actively suppresses immune functions by catalyzing the rate limiting reaction in the conversion of tryptophan to kynurenine. RESULTS In this phytochemical study, 18 known compounds were isolated from aqueous dissolved Aloe exudates. All of the isolated compounds were examined for their ability to inhibit IDO activities for a series of anthraquinone derivatives (1-7) isolated from the Aloe extract; the IC50 values of these compounds ranged from 39.41 to 53.93 µM. Enzyme kinetic studies of their modes of inhibition indicated that all of the compounds were uncompetitive inhibitors. CONCLUSION The aqueous dissolved Aloe exudate can be used as a source of novel natural IDO inhibitors and merit testing as therapeutic agents in the treatments of cancer and immunopathologic diseases, such as autoimmune, inflammatory, and allergic disorders. SUMMARY In this study, 18 known compounds were isolated from aqueous dissolved Aloe exudates. All of the isolated compounds were examined for their ability to inhibit indoleamine 2, 3-dioxygenase (IDO) activities for a series of anthraquinone derivatives (1-7) isolated from the Aloe extract. Abbreviation used: IDO: inhibit indoleamine 2, 3-dioxygenase, TMS: tetramethylsilane, HMQC: heteronuclear multiple quantum correlation, HMBC: heteronuclear multiple bond correlation, COSY: 1H-1H correlation spectroscopy, ESI-MS: Electrospray ionization mass spectrometry, DMSO: dimethyl sulfoxide.
منابع مشابه
Indoleamine 2,3-Dioxygenase and Immunological Tolerance during Pregnancy
Indoleamine 2,3-dioxygenase (IDO), an enzyme involved in the catabolism of tryptophan, is expressed by a variety of cells and tissues such as macrophages, dendritic cells, cells of the endocrine system and by the placenta. IFN- γ is the main inducer of this enzyme. IDO acts as an important defense mechanism of innate immunity against pathogens. It also has tumor suppressive activity and prolong...
متن کاملA biological pathway linking inflammation and depression: activation of indoleamine 2,3-dioxygenase
This article highlights the evidence linking depression to increased inflammatory drive and explores putative mechanisms for the association by reviewing both preclinical and clinical literature. The enzyme indoleamine 2,3-dioxygenase is induced by proinflammatory cytokines and may form a link between immune functioning and altered neurotransmission, which results in depression. Increased indol...
متن کاملThe Mechanism of Substrate Inhibition in Human Indoleamine 2,3-Dioxygenase
Indoleamine 2,3-dioxygenase catalyzes the O(2)-dependent oxidation of L-tryptophan (L-Trp) to N-formylkynurenine (NFK) as part of the kynurenine pathway. Inhibition of enzyme activity at high L-Trp concentrations was first noted more than 30 years ago, but the mechanism of inhibition has not been established. Using a combination of kinetic and reduction potential measurements, we present eviden...
متن کاملExogenous Tryptophan Promotes Cutaneous Wound Healing of Chronically Stressed Mice through Inhibition of TNF-α and IDO Activation
Stress prolongs the inflammatory response compromising the dermal reconstruction and wound closure. Acute stress-induced inflammation increases indoleamine 2, 3-dioxygenase-stimulated tryptophan catabolism. To investigate the role of indoleamine 2, 3-dioxygenase expression and tryptophan administration in adverse effects of stress on cutaneous wound healing, mice were submitted to chronic restr...
متن کامل